Коды в Торе — Современный метод дешифровки

Дата: | Автор материала: Проф Элияу Рипс и д-р Александр Ротенберг

2728

Тора — единственная общеизвестная книга, о которой древняя традиция сообщает, что в ней имеется информация, закодированная в форме слов, записанных с равными промежутками (скачками или шагами) между буквами. Такая запись получила в наше время название Коды Торы. Задача ее дешифровки оказалась непростой. Прежде всего не всякое слово или выражение (если, например, оно длинное) может быть найдено закодированным с равными шагами, и не всякое слово найдется в логически ожидаемом месте. Очевидным является и тот факт, что далеко не всякая последовательность равноотстоящих букв в Торе является осмысленной. При этом число всех появлений короткого слова может быть огромным (десятки и сотни тысяч), и мы не в состоянии понять смысл всех этих появлений. С другой стороны, практически в каждом длинном тексте может быть найдено множество коротких слов с равными промежутками между буквами, появляющихся случайно и не имеющих никакого скрытого смысла.

Несмотря на сложность задачи, метод дешифровки позволяет, используя математический и лингвистический анализ данных, получать впечатляющие результаты. О некоторых из них мы постараемся дать представление читателю. Заметим также, что метод не может рассматриваться в качестве ключа ко всем секретам Торы, поскольку Традиция сообщает о множестве путей к скрытой в Торе информации, и наш метод — лишь один из них.

Метод включает следующие шаги.

Выбор ключевых слов

Процесс дешифровки начинается с выбора слов и выражений для поиска. Слова, во-первых, должны быть значимы для исследуемой темы. Во-вторых, они должны быть закодированы, то есть появляться в тексте с равными шагами, а их появления — определенным образом связаны друг с другом или с текстом. Такие слова называются ключевыми словами.

Собственно поиск

Текст Торы записывается в виде одной длинной строки, не содержащей ни пробелов, ни знаков препинания. В этой строке компьютер разыскивает ключевые слова, записанные с равными шагами. Находки называются появлениями. Появление с шагом 1 соответствует обычному чтению. Появление в направлении, противоположном обычному чтению, имеет отрицательный шаг. Поиск ведется либо во всей Торе, либо в одной из ее пяти книг.

Табличное представление результатов поиска

По мере увеличения шага появления различать его буквы в тексте становится все труднее, а для шагов, составляющих сотни и тысячи — попросту нереально. И здесь используется представление текста в виде двумерной таблицы, позволяющей видеть любое появление в компактном виде. Поясним это на примере приведенного выше слова בהרד, указанного Рабейну Бехаей. Оно записано в Торе с шагом 42, и все буквы его расположены в разных стихах. В соответствии с шагом 42, первая строка таблицы содержит первые 42 буквы текста. Во вторую строку помещаются следующие 42 буквы, в третью — следующие 42 и т.д. В результате получается прямоугольная таблица шириной 42 буквы. Рассмотрим любые две буквы, расположенные в соседних строках и в одном столбце, т.е. на одной вертикали. В исходном тексте между ними расположены ровно 42 буквы. Поэтому любое появление с шагом 42 или -42 представляется на нашей таблице (см. ниже) в виде вертикального столбика подряд идущих букв. При положительном шаге слово прочитывается сверху вниз, а при отрицательном — снизу вверх. Число 42 называется размер таблицы. На приведенных таблицах размер указан справа вверху. Справа указано в обычной для Торы буквенной форме место строк таблицы в исходном тексте, справа налево: книга, глава, стих

002 baharad42.gif

Производные таблицы

В таблице с половинным размером, т.е. 42:2 = 21, буквы нашего появления расположены по вертикали через одну букву (см. ниже). В этой таблице появление с шагом 42 идет по вертикали, поскольку 42 делится нацело на 2. При делении 42, например, на 4 получается дробное число 10.5. Между тем размер таблицы — целое число, поэтому дробный остаток округляется. Таким образом, таблица, получающаяся делением 42 на 4, имеет размер 10. Наше слово расположено на ней по диагонали.

002 baharad21.gif

002 baharad10.gif

Как правило, таблица имеет осевое слово, по шагу которого выбран размер таблицы. Осью всех этих таблиц является слово בהר»ד.

Встречи слов

Представление текста в виде двумерных таблиц не только делает появления легко видимыми, но и позволяет видеть несколько появлений одновременно. Такая группа появлений называется встреча и является одним из центральных объектов исследования. Два появления образуют парную встречу, если же число появлений больше двух, встреча называется множественной.

Оценка результата

Этот шаг наиболее важен и базируется на следующих формах кодировки:

Существование длинных осмысленных выражений

Наиболее яркое явление кодировки. Длина получающихся таким образом предложений может достигать нескольких десятков букв.

Наличие продолжения

Появление имеет перед собой или после себя тематически связанное продолжение.

Связь появления с текстом

Во многих случаях появление расположено на двумерных таблицах вблизи тех мест текста, которые лексически или тематически связаны с ключевым словом.

Принцип минимума

Появления слова могут быть упорядочены по величине шага: чем короче шаг появления, тем лучше место, которое ему приписывается (например, из трех появлений с шагами 5000, -2000 и -100 лучшее место принадлежит третьему как имеющему самый короткий шаг -100). На заре разработки математической теории Кодов Торы было замечено, что чем короче шаг появления, тем важнее его роль в кодировке. Это означает, что такие появления выказывают большую тенденцию к наличию продолжений, тесным встречам с появлениями других слов и с релевантными стихами текста. Когда мы называем появление минимальным, это означает, что его шаг — самый короткий.

Явление лучших встреч

Исходными данными для исследования связи слов являются их появления. Чем теснее встреча появлений, тем теснее связь между словами. Наиболее тесные встречи называются лучшими. По своей роли лучшие встречи являются обобщением принципа минимума.

Количество парных встреч двух слов может быть огромно. Существующая математическая методика позволяет компьютеру выделить из множества встреч несколько лучших. Отметим два явления. Во-первых, лучшая парная встреча притягивает другие лучшие парные встречи. Во-вторых, лучшая множественная встреча слагается из лучших парных встреч.

Математическая проверка значимости связи слов

В случае длинного осмысленного предложения используется понятие энтропии языка. Для оценки встреч слов и выражений используются методы Монте-Карло и лексического подобия. Метод Монте-Карло отвечает на вопросы «А что, если попробовать другие тексты?» и «А что, если рассмотреть неравные шаги?», а метод лексического подобия отвечает на вопрос «А что, если попробовать другие слова?».

Исследование структуры кодировки выявило ряд ее организующих принципов, поддающихся формальному анализу:

— наличие в таблице оси, собирающей вокруг себя остальные слова или их лучшие встречи;

— важную роль появлений, параллельных оси;

— повторы слов и их вариаций в одной и той же таблице;

— наличие соответствия таблиц, позволяющего, исходя из данной таблицы, строить новые таблицы, пользуясь методами рекомбинации, параллельного переноса, перестановки слов, других лучших встреч и др.

В качестве иллюстрации перечисленных методов дешифровки приведем две серии примеров. Первая представляет текущие события, и мы надеемся пополнять ее с течением времени.

Вторая группа примеров — положения Устной Торы, скрытые в Письменной Торе. Основную роль здесь играет тот факт, что многие детали, сообщаемые Устной Торой и дополняющие события, описанные в Торе Письменной, закодированы в форме лучших встреч в связи с теми стихами текста, к которым они относятся. Информация, относящаяся к Устной Торе, взята из Талмуда, Мидрашей, классических комментариев Раши, Рамбана, Рабейну Бехаей, Бааль А-Турима, Рашбама и др.

Вторая группа базируется в основном на материалах книги A.Rotenberg, And All This Is Truth!.


http://www.beerot.ru/?p=21649